SUBJECT BIBLIOGRAPHIES IN INFORMATION WORK

K. BOODSON

The purpose of bibliographies and their use in information retrieval; notes on history and development, types of bibliography, and the components and features of a subject bibliography; the function of abstracts and the importance of effective indexing; concludes with a section on the Bibliographical Guide as a literature searching tool.

Introduction

Heard less now, threadbare in impact through repetition, the phrase "information explosion" was for many years in constant use in the information world. Certainly the reference to an explosion was justified, represented by a phenomenal growth in the number of published works, largely periodicals of great diversity containing a mass of contributed articles of equally diverse variety and merit. But how justified was it to refer to this as an "information explosion"; would the description "publication explosion" be less of a misnomer? The scientist would relate this growth to a vast increase in scientific research in new and expanding fields; the economist would study the economics of publishing; and possibly the sociologist might concern himself with prestige, personal and national, as a force behind publishing. But might it not be postulated that an exponential growth in the number of published articles would be complemented by a lineal growth in the sum total of information?

Whatever the factors behind the explosion, scientists, research workers and information workers needed to know what had been published, to sift and sieve the mass and retrieve that information relevant to their own work and interests. To this end, and parallel with the growth in primary publications, there was an increase in secondary sources, the information tools used in searching the literature for profiled information. Pending some expansion and definition later in the article, it will be convenient to think of these secondary sources as having the same form and function as bibliographies, particularly the subject bibliography. It is this type that I shall be concerned with, against a more general and perhaps scanty survey of bibliographies and their place in the information world.

The librarian and information officer, each working with facts and data in his particular hall of knowledge, is regularly surprised by the unfamiliarity shown by scientists, students and research workers towards bibliographies and other sources of information. In his searching,
the librarian may use personal contacts with specialists, reference and data handbooks, textbooks, encyclopaedias, periodicals and scientific journals, monographs and reviews, research reports, conference reports, catalogues, standard specifications, patent specifications, theses, citation indexes, and bibliographies.

The science (and art) of finding facts from these sources is known professionally as "information retrieval". It is a less absolute science than most, and the professional worker comes to recognise and accept its restrictions and limitations, these deriving largely from the economics of information handling, the effectiveness of systems, and the mass to be handled. Estimates of the number of articles published throughout the world each year now reach seven figures, and a recent cumulative total for the last 20 years was 30m. Repetitive publication, summary and digest articles, open plagiarism, may reduce this by a significant factor, but the mass remaining forces an information service to operate within two precepts: (a) that economic factors will impose limits on the effectiveness of the service in supplying information from its own resources, and (b) that no means exist by which the full information on a subject can be produced. It is often the subject bibliography in its various forms that enables the individual information worker to operate as effectively as possible within these precepts.

Definitions

Politicians and scientists abuse language equally, enclosing words either into strait-jackets or into off-the-peg portmanteau suits to accommodate the meaning they wish. In our own science of information there is sometimes a tendency to this, and it is likely that my own connotation of the word bibliography will differ from that of the antiquarian or the bookseller. There is the further difference between bibliography and a bibliography, between systematic and critical bibliography; the study of books, book-making and book usage, the world of the bibliophile on the one hand, and the compiled guide to literature on the other. Looking at O.E.D. we have

"a list of the books of a particular author, printer or country, or of those dealing with any particular theme; the literature of a subject."

What we are now concerned with is mainly the scientific information bibliography, used to locate published knowledge on a subject. For these one might hope for a further expansion in the next edition of O.E.D., to cover the current usage by the professional:

"a guide, annotated or otherwise, to the book, periodical, report, and other primary source literature of a subject, often referred to as a 'secondary source'."

History and development of bibliographies

Against the more precise definition, bibliographies are comparatively recent, but in the wider sense they have a long history. The scholarly text by Theodore Besterman describes the history of bibliographies from the earliest times; I am indebted to this work for the following notes on some of the outstanding developments.

The earliest bibliographies were the lists of an author's works, usually included by the author in one of his later volumes. A list of this type appeared in a collection of Galen's works, printed in Venice in 1525 from a 2nd century MS.; it gave about five hundred titles in a classified arrangement. A number of early MS. works had similar lists, or were in the form of compiled histories of the lives of various writers and included lists of the works of each. In general, the invention of printing did little to advance the development of bibliography, and early printed books continued the form of listing found in MSS. J. Tritheim, however, issued a number of bibliographical works with new features. His History of ecclesiastical writers*, 1494, gave a chronological arrangement of about 1,000 authors, with brief biographical notes and a list of works by each one, with a total of some 7,000 titles.

What may be considered as the earliest subject bibliography appeared between 1545 and 1555. This was Gesner's Universal bibliography*, 1494, a chronological arrangement of about 1,000 authors, with brief biographical notes and a list of works by each one, with a total of some 7,000 titles.

A major national bibliography which appeared towards the end of the 16th century was Maunsell's Catalogue of English printed books*; this
also introduced important developments in bibliographical science. The Catalogue took the form of an alphabetically arranged subject bibliography, the more important subject groups being sub-divided. In each group, the titles were also in alphabetical order; authors' surnames were used throughout. The bibliographic description used by Maunsell was comparable to the modern bibliographic form.

With these and other works, the foundations of bibliographical science had been prepared by the 17th century, but the importance of bibliography was not recognised until later, and its development as a science did not take place until late in the 18th century, when the first analytical guides to literature began to appear.

A brief history of indexing refers to subject indexes in 16th century printed works; the earliest, however, in 1525, omitted page references, becoming just an alphabetical list of contents. Two editions of Urbinatis Anglicae historicae, by Polydor Virgil, 1546 and 1555, had quite detailed subject indexes, the later one with page and line references. The earliest indexed work which the author found in English was The naturelle history of C. Plinius Secundus, translated by Philemus Holland in 1601. Thus recognition of the need for some guidance to the subject matter of a book appeared quite early; in the 20th century demand for effective indexing, parallel with the increasing complexity of information retrieval and the growing use of subject bibliographies, has given rise to intensive study of indexing techniques and methodology.

Types of bibliographies

Regarding bibliographies in their basic form as a listing of information sources, there are five main features which put them into various categories:

(a) **Data:** the form in which information is given in the entry. It may vary from merely author, title and date for a simple reading list, to full details of article title, author, periodical source, place of publication etc. in a subject bibliography.

(b) **Annotations:** whether annotated or not. The annotation may vary from a brief explanatory sentence to a detailed summary of the subject matter of a scientific article or report.

(c) **Format:** overall presentation of material. The arrangement of the entries will depend on the needs of the user and the intention of the compiler, and may be by date, by author, in subject groups, by title, or possibly by some special feature such as place of origin.

(d) **Indexing:** inclusion of author and subject indexes. There are few bibliographies whose value is not enhanced by some form of indexing, and in subject lists it should be considered essential.

(e) **Form of publication:** single document or periodical publication.

With the bibliography in information work, there is a further natural distinction between those concerned with book and report literature, single complete documents on the one hand, and those dealing with periodical literature on the other. Very broadly, new knowledge and developments are reported in periodicals, digested, and become established to appear in the contents of books. Searching for established information thus starts with the book index and contents list. In some searches this may give the full answer required. But to cover not only established book information, but to check also what has been published in scientific journals in the past and what is currently being reported, the book search must be followed by reference to suitable bibliographies as secondary sources and possibly issues of recent current journals.

The results of an information search will probably be in one of three forms: (a) specific data, e.g. vapour pressure of methyl chloride at room temperature, coefficient of friction of bronze against nickel-steel, etc., (b) a list of source publications where information on the subject can be found, or (c) a digest of published information relevant to the enquiry, with summaries (abstracts) of each article or source, and full details of the original reference. This means that there is a growing degree of complexity, effort required and cost, between the simple search and the extended digest bibliography.

Possibly the most elementary form of subject bibliography is the un-annotated list of main texts on a topic, with subject indexing for more extensive ones. The introduction of annotations should increase the value of any such list, at the same time, however, multiplying the cost and raising the level of experience required to do the work involved. A large number of guides of
this kind are published, or are produced internally by information units of various organizations. A more sophisticated approach which has become popular in recent years is the "Guide to the literature of . . ." or "How to find out about . . .". These take the form of written texts on the literature of a subject, describing and assessing main and auxiliary works. Schutze lists over 1,000 in his main work and supplements. The sources covered are generally books and reports, with notes of the titles of periodicals which deal with the subject in question.

The worker with scientific literature is very largely concerned with information in the separate contributions to the periodicals, and among his major working tools will be the different guides to this information. The most prolific is the abstract journal, published at regular intervals, and carrying digests of the information contained in current issues of periodicals within a determined subject field. This may be confined as with Rare Earth Metals, or quite comprehensive as with Chemical Abstracts (which includes information in ancillary fields well outside the conventional connotation of chemistry) or the Russian Referativnyi Zhurnal. Nearly every branch of science and technology is represented by one or more of these abstract journals, a number produced by institutional organizations or commercially, and available against an annual subscription, others prepared as "in-house" publications by individual companies. In compiling the "in-house" journal, the information staff have the great advantage in abstracting of highlighting matters of specific company interest which could be passed over in a more general summary; there is also, in general, a significant gain in reducing delay between the date of publication of the original and the appearance of the abstract. In addition to the periodical devoted solely to abstracts, there are a number of commercial and institutional publications which include a section of abstracts in each issue.

Whereas the abstract journal is designed for awareness of current information and for literature searching, a parallel series of compilations can be used for guidance to literature over a set period. These are in the form of narrative and evaluative reviews, bringing together in a single text an assessment of knowledge and developments reported in a subject, the text being accompanied by a full bibliography and usually having subject and author indexes. Some are in the form of monographs, supplemented and brought up-to-date at intervals, while a number appear as "Annual reviews of . . ." or "Reviews of progress in . . .". It is unfortunate that, in recent years, various factors have resulted in the disappearance or less frequent issue of a number of these most useful guides.

The citation index, a fairly recent advent to the information field, has a function similar to that of the abstract journal, but is based on a quite different approach. It consists basically of a list of source references arranged alphabetically by the names of authors cited in the literature, with entries chronologically under each cited author. Following the citation reference there are the details of the source article in which the citation is given. Citation indexes, of which perhaps Science Citation Index is the best known, are designed for computer operation, and are brought up-to-date at regular intervals. The subject index is likely to be of the "Key-word-in-context" (KWIC), "Key-word-out-of-context" (KWOC), or Permuterm type. The idea behind a citation index is that an initial check of one entry will lead by a chain reaction to all quoted and relevant work in that and related fields, to give a more comprehensive picture than might be obtained from a search of abstract journals using conventional subject indexing.

Elements and characteristics of a bibliography

Bibliographies, as with library catalogues, have a general function to retrieve information from a mass of documents; but the specific function may vary from locating and identifying a single document, to a detailed study and assessment of what is available on a subject. The compiler will determine the format and contents accordingly, and should then consider:

(a) definition of the subject scope
(b) period to be covered in the search
(c) sources to be searched for references
(d) basis of selection and inclusion of material
(e) arrangement and presentation of material
(f) format for entries
(g) abstracts and abstracting policy
(h) extent and lay-out of indexes.

As far as practicable, consideration of the user and his needs should be paramount, but economic and labour factors are likely to exert dominant influences on the form which the final product takes; overall time devoted to the work,
level of abstracting and indexing, format and appearance are more likely to be related to cost than to ideal requirements.

Two features of the bibliography do not affect the general user, but are of some concern to the librarian. These are the form of the source reference, and the abbreviation used if any for the periodical title. Details which should be provided in the reference and the form of printing are specified in BS 1629 Bibliographical references, with permissible variations. When these are followed, the particulars of the article required are clearly set out, and there is no confusion between volume numbers, part numbers, dates and pages, as is often the case. I have met, for example, the form in extremis

Iron Age, 73; 66.

with no further guidance as to whether it is vol. 73, p.66; p.73, vol. 66; p.73, 1966; or p.66, 1973. These are in practice possibly librarians' matters, but in present circumstances, particularly where photocopying of periodical articles has to a great extent become standard procedure in borrowing and lending, accuracy and precision of a source reference is important, and will of course be of benefit to the library user in reducing the number of queries. There is, however, still great diversity in the styles used in periodical reference lists, although BS 1629 has been available since 1950.

There are also wide variations in the abbreviated form used for the periodical title. It is normal in a reference list to shorten the title for most periodicals, certainly desirable, for example, with Transactions of the American Society of Mechanical Engineers; (A) Journal of Engineering for Power, if not necessarily for Journals of Metals or Library World. Some organizations have developed their own guide rules and standard conventions for abbreviating, but there is a tendency now to follow the contracted forms used either by the American Chemical Society in Chemical Abstracts (a list of periodicals abstracted with their contractions is issued by A.C.S.) or those of the World List of Scientific Periodicals (the British Union Catalogue of Periodicals incorporating World List of Scientific Periodicals).

As with the details of the reference, confusion over titles can be avoided by following a standard and recognised form. Both the A.C.S. list and the World List, for example, have prescribed forms for Metall, Metallurg, Metallurgia, Metallurgie and Metallurgist, but these titles may be found in non-standard bibliographies with the abbreviation "Metall." or even "Met.", indiscriminately. It is helpful, especially in an extensive bibliography, to indicate whether one of the standard lists has been followed.

Abstracts and abstracting

There has been much debate on the justification and need for annotations, summaries and abstracts in bibliographies generally and in scientific subject bibliographies in particular. It is mostly accepted that they add value to a list, to give details of the physical features and special characteristics of an item in a bookseller's list perhaps, to indicate the trend of a scientific article, or at the highest level to provide a reader with the essential facts from an article so that he need not necessarily refer to the original from which the abstract has been prepared. It is this third function, often in relation to limited distribution sources and foreign periodicals which are difficult of access, that is most significant. It is also the most debated, the arguments centring on whether it is possible to satisfy the scientist or research worker with information in an abstract however detailed, or whether he will still need to see the original text. The preparation of abstracts at this level is expensive in any case, and requires staff with good qualifications and experience; it can generally only be undertaken by large organizations on a cooperative or subscription basis.

A relevant and classic comment, valid at the time although less so since computerization, was that of F. T. Sisco9 about 18 years ago:

"If a research job in the U.S.A. costs less than $100,000, it is cheaper to do it than to find out if it has been done before and reported in the literature."

This referred to the situation in metallurgical literature, a field in which there have since been major improvements and developments in the source guides, in addition to the significant advances in indexing techniques generally.

Cost aspects and divergency of views on their value have led to two accepted forms of abstract, the indicative and the informative. The
former is intended to give the reader guidance to decide for himself whether he should see the original; it indicates the type of article, level of treatment and author's approach, but does not generally include specific data. The second sets out in summary the main data, author's aim, equipment and methods used, main findings, and conclusions. The object here is to relieve the reader of the necessity to see the original article.

An abstractor is not called upon to make critical assessment of any aspect of an article or reported work, although some information workers have suggested this responsibility. My own opinion is that any form of criticism by an abstractor is wrong, other than that which rests with him in the selection or exclusion of material for abstracting. His job is to present a summary of the factual content of the article; it would seem unlikely that he would often be in a position to evaluate those facts.

As a working tool in information services, abstracts may be used in a current or retrospective function. Individuals in an organization must be fed promptly and regularly with selections from currently published literature. This may be done by some form of "current awareness" bulletin, a periodical listing of abstracts covering the interests of and distributed throughout the whole organization; or it may be by some system of "selective dissemination of information", whereby individuals receive only abstracts of direct interest to them. Retrospective use of abstracts, part of the business of information retrieval, is usually in the production of a bibliographic list of summaries, to give information from source articles relevant to a particular subject enquiry. The data base searched in the preparation of a list will often be the files of the library's "current awareness" bulletin; where fuller information and a wider search is needed, or where the enquiry is outside the subject scope of the bulletin, other suitable abstract journals will be used for the search.

The high cost of producing abstracts, which has led many libraries to rely on subscription abstract journals rather than produce their own "in-house" bulletin, has also resulted in some experimental work in auto-abstracting by computer. Word frequency and usage in an article form the basis of the approach, the assumption being that an author will use constantly the established terms and pertinent expressions of his subject. Computer scanning of the text against prepared "significance factors" results in the selection and print-out of regularly repeated phrases in order of significance factor, to produce the abstract. Developments of this kind are certain to progress as O.C.R. and text scanning techniques develop; but how far computer technology may effectively take the place of creative and evaluative mental effort remains debatable.

Another novel approach which combines abstracting and indexing has also been suggested. With this, a prepared "summary" of the contents of an article is reduced to significant "data lines", which are converted to key-word chains to be used as index entries. For example, a summary:

"Titanium, added to high-tensile steel with C content between 0.5 and 1.5%, gave fine grain structure, superior to that obtained with established additives"

would give key-word chains:

(1) Titanium — additive — high-tensile steel — grain structure

(2) Steel, high-tensile — grain structure — additives — titanium

(3) Steel, high-tensile — C content — grain structure — additives — titanium

(4) Steel, high-tensile — additives — titanium — grain structure

(5) Grain structure — fineness — steels — additives — titanium.

The key-words must be from an established thesaurus, to enable programmed co-ordination to retrieve effectively from the data base. It is unlikely that a system of this nature could form the basis of an informative abstract system, but it has possibilities at the indicative level.

Indexing

The value and effectiveness of a collection of abstracts will be determined by the quality of the indexing, and the index must be both efficient as a retrieval tool and acceptable from the searcher's point of view. The importance of acceptance by users should not be minimised. One has only to think of microfiche in information work generally to suggest that techniques dictated too largely by economic considerations, or theoretically cost-saving advances in information processing, are in practice self-defeating where the end-product is likely to be rejected by the user. There is also evidence of this situation with some forms of computer print-out indexes. Information workers become familiar with and accept unconventional forms; the scientist and general
reader, using information and indexes as an adjunct to their main job, should not be expected to read extensive explanatory notes or have detailed instruction before being able to understand how an index works. In 1972 I.E.E. issued two parallel documents on users' attitudes to indexes. The first was based on a study of reactions to various indexes in scientific abstract journals. Among the preferences shown by users were:

(a) accuracy
(b) ease of use
(c) lay-out and presentation
(d) choice of subject index headings
(e) optimum use of cross references
(f) overall effectiveness in practical use
(g) minimum amount of "noise".

The second report was concerned with the procedures used by scientific workers and information officers in making searches from Science Abstracts. One conclusion was that users generally expected a high pre-coordination of index terms; most made a practice of going straight to the index for a pre-conceived concept of their own, and proceeded from there to more standard thesaurus-type descriptors if the first step was unfruitful. Information workers pondered and searched for alternative terms to a greater extent than did scientific workers. The need for a "lead-in" vocabulary, to take the user from his initial mental image concept to the correct descriptor used in the index, was apparent. Users without the specific subject knowledge found difficulty with some of the more specialised indexes and needed assistance.

The truism that only a participant can know the real effort involved in any activity certainly applies to indexing and the production of an effective index; in an extensive collection of abstracts the work may equate to that in the compilation and production of the abstracts. In 1958 (pre-computer days) one half of the total effort in producing Chemical Abstracts was devoted to the indexing; it took between two and five years to train an indexer from Ph.D. to the required level.

One attempt to reduce the total effort in indexing followed the principles used in automatic abstracting methods, mentioned earlier. An extension of this is the Permuterm index, in which all significant words in a title, excluding articles etc., are used as main descriptors in the index; under each, in alphabetical order, are put as sub-terms all other main words of the title. Another suggestion has been to eliminate both abstracting and indexing by putting into computer store the whole unprocessed text of documents. Natural language questions put to the computer are converted against a thesaurus to give suitable matching words, and the stored data base is searched for relevancy.

Advances in computer technology will tend to lower the level at which computerisation of information work becomes economically justified and, correspondingly, the proportion of mental to machine activity in the system. But at basis in this field the computer remains, and is likely to remain, a sophisticated machine whose operational efficiency is determined by the intellectual direction it receives.

Nevertheless, computers may be programmed to reduce if not eliminate the results of personal idiosyncrasies in the input. Indexing particularly will reflect strongly the personal approach and mental images of the compiler. C. L. Bernier suggested the introduction of indexing specifications, on a par with engineering specifications.* These might cover the kind of index required, size, accuracy, terms and concepts, and format and typography. This is parallel to the ASI Guideline reported in the April 1975 issue; the forthcoming revision of BS 3700 on indexes for books, periodicals and other publications, was noted in this number, which also carried an article by F. Blum on the work of Committee Z39 of the American National Standards Institution. This committee is concerned with library work, documentation, and related publishing practices; among its current standards are:

It is desirable that codes and guidance should be available for indexing and indexes, and some aspects could no doubt be covered effectively by specifications. But there must be inherent difficulties in thinking of these along the lines of engineering specifications. Hardness, composition, heat treatment of a bolt may perhaps be comparable to such requirements as type-size, paper quality, number of entries per page, in an index. But specifying and achieving dimensional tolerance and overall dimensions in engineering bears little relationship to specifying

*Specifications prepared by the American Society of Indexers appear in our last issue.
and achieving accuracy and size in an index. How does an indexer, prior to commencing the index to a reasonably complicated text, organise his work to meet a specification, for example, for x total entries, y total subject headings, 2.9 mean terms per item, and an accuracy of 5 errors per 1,000 terms?

Another aspect of standardisation where some uniformity would be desirable, and with much wider implications than in indexing, is that of technological terms. One has only to compare various standard thesauri to see the wide diversity in selection of concepts in the same subject area. Recommendations for the general acceptance of a major and standard published thesaurus as a guide to preferred descriptors in a specific field might be an initial step in this direction.

Bibliographical guides

Abstracts and indexes loom large in the life of a librarian or information worker, concerned as he is with the retrieval and assessment of published material. But literature searches can be erratic in their results and sometimes extremely frustrating. Guides to literature and other sources of data have their inadequacies and limitations, both in compilation and in coverage of the subject, and their effectiveness in use is determined by indexing efficiency. The searcher must be alert to the existence of sources untapped by the retrieval tools which he is using, and to the overriding impact of his own searching efficiency, his understanding and use of the retrieval systems. It has been estimated, in this context, that searchers using only one abstract journal for a literature search could miss as much as one half of relevant published references in a specific subject field. A sobering thought for any information worker!

It seems logical to conclude that, all-in-all, there are no present means whereby information searching and retrieval can ensure that all the possible documents which might be relevant to an enquiry will be produced as a result of the search. Is it feasible to devise and operate any system which could achieve this? Major considerations are availability of material, effectiveness of worldwide co-operation, and the development of input and retrieval systems independent of human individuality. It is probable that both the practicalities and cost would be insurpassable barriers to any such scheme.

One must consider at what stage cost of searching for knowledge exceeds the benefit of having found it. Sisco's comment, quoted above, is applicable at various levels of searching. A research worker, for whom hardness data he needed had been found from standard sources for all except one of a number of alloys, would probably agree that it was preferable to establish the missing one in the laboratory, rather than search extensively in the literature.

One of the available types of guide to literature perhaps offers, by the nature of its approach, a higher benefit in access to literature in return for cost of effort than is general. This is the Bibliographical Guide, designed for retrospective searching, and offering selective access to published literature in a specific subject field. Important survey and review literature in the area, each item having its own list of references to related published work, is collected into one compilation, with detailed author and subject indexes. Typical are the works in a series published by MacDonald Scientific and Technical over a period of years from 1961. The indexing approach to one of these, on Non-ferrous metals, was described in the April 1975 issue of The Indexer.

The Bibliographical Guide does not attempt an exhaustive or comprehensive listing of all known references on the subject, but is regarded as a key reference work from which to start a survey. As with citation indexes, the searcher would, through the bibliographies and reference lists of items in the Guide, be provided with a conspectus of the whole subject literature. Since a variety of abstract journals, monographs and reviews, bibliographies, and original literature is consulted in the compilation of the text, it offers access to a much wider range of source literature in a more concise form than is generally possible.

Conclusion

Information handling, as the concern of the librarian and information officer, requires varied and diverse techniques in both data storage and retrieval. Equally, on the retrieval side, there is a wide variety of searching tools available, each suitable for a different type of data base or a specific form of information activity.

It should not be expected that one searching tool, a subject bibliography or a citation index or a KWIC index, could be used equally well for all types of retrieval search; this is as facile as thinking that all machining requirements in an engineering workshop might be met by one machine tool. The tool must be designed for the kind of work and adjusted by the operator for the
job in hand. Thus in information work bibliographies, as the most important class of retrieval tool, are in many diverse forms, and the user must understand the function and purpose of each in relation to the retrieval job he is doing. The parallel can, in fact, be taken further with one of those oddities of terminology, the term “indexing”; accuracy and effectiveness of indexing in a machine tool will determine the quality of the end-product, and how true this will also be of the bibliography.

References.
2. Tritheim, J. Liber de scriptoribus ecclesiasticis. Basileae. 1494. ff. [vi], 140.
5. Gesner, C. Appendix bibliothecae Conradi Gesneri. Tiguri. 1555. pp. [xvi], 105.

Current Book Review Citations

The H. W. Wilson Company have begun publishing (eleven times a year) Current Book Review Citations. It brings together citations of reviews appearing in 1,000 journals covered by ten Wilson indexes which include major literary, educational and specialized publications.

The entries in each issue are arranged in two parts. Part 1 cites book reviews under the author (or main) entry; Part 2 consists of title entries and serves as an index to Part 1.

(Concluded from page 26)

physical handling of massive tomes, papers cards, etc., the constant reading of the Briefs trains not only the hands but also the eye, so that galley proofs did not present the traumatic experience I thought it might.

Also, having had published a local history which in the writing necessitates collecting thousands of bits of paper with extraordinarily obtuse clues and messages thereon which one hopes will one day emerge as a coherent sentence or paragraph, it was not so difficult for me to handle cards and/or slips with entries running from A-Z when preparing an index for a multi-author book which the authors should have compiled themselves, and which some rather inexperienced person had already started.

I was informed by the publishers that this was the first book which had been given to someone outside their office to be indexed—the reputation of the Society and mine, if any, was at stake! I was somewhat disconcerted to find on the cards already FLOGGINGS and MET ODISM—as this was a book for fourth-formers in New South Wales, I wondered if Flo was one of the more obscure ladies of Sydney in the 19th century and if Met Odism was some new kind of cult. It made some difference naturally in alphabetising to realise that what was meant was FLOGGINGS and METHODISM.

Another multi-author book for tertiary students revealed how different publishers can be in their methods and type of index required and also how much easier it is to work from a fully printed proof rather than galley proofs and paste-ups, which land on the floor at the most inconvenient moments.

One question which arises from this experience is: Should an indexer also be a proof-reader? Also I feel that, if the publisher requires a completed index to be typed by the indexer, it would be extremely helpful if we could all know exactly how a type-setter operates as well as how an editor operates. The modern trend for no capital letters or full stops after abbreviations is difficult if one does not know the various quirks of various publishers. Will indexers ever know whether the index they have compiled is a good one or not?